Yellow Level

1. (6 credits) What is the maximum number of sides of a figure that is a common part of a triangle and a convex quadrangle? Give an example, please.
2. (6 credits) Winnie-the-Pooh's barrel contained 22 kg of honey and Nkg of - Wath COU peanut butter. After adding 15 kg of peanut butter to the barrel, its content in the barrel increased by 33%. What is N ?
3. (8 credits) We found two divisors of 160000 . Their sum was equal to 1025 . What was the larger of these divisors? Find all possible options.
4. (8 credits) Find the numerical value of $(\sqrt{12}+5 \sqrt{3})(\sqrt{578}-3 \sqrt{8})-\sqrt{6}$.
5. (8 credits) Let a natural number be called a 'number of interest', if for any natural k meeting the conditions $1<k<8$ either this number is divisible by k, or its digits can be rearranged so that the resulting number will be divisible by k. Find the smallest number of interest.
6. ($\mathbf{1 0}$ credits) In a right triangle, the sum of its sides is 70 and the sum of the squares of its sides is 1682. Find the square of the difference of its legs.
7. (12 credits) Each cell of a 7×7 table contains a natural number. In any 1×3 or 3×1 part of this table, the sum of numbers contained in its cells is 7 . Can the sum of all numbers contained in the table be equal to 120 ?
8. (12 credits) There are several rooks on the chessboard. A study composer wants to paint each rook any of N colours to avoid the situation when two rooks of the same colour can take each other. What is the smallest N meeting such conditions for any arrangement of the rooks? Any rooks cannot take each other if a rook of other colour is placed between them.
9. (15 credits) 100 men sat at the Round Table, Each of them is either a knight who always tells the truth, or a knave who always lies. 28 of them gave a positive answer to the question 'Is the neighbour to your left a knight'. What was the maximum number of liars sitting at the Round Table?
10. (15 credits) Kai divided a 10×10 square ice plate into 3 parts and calculated the perimeter of each part. All perimeters were equal to N . What is the maximum possible N ?
